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Società Italiana di Fisica
Springer-Verlag 2000

Statics and dynamics of a single ferrofluid-peak
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Abstract. We consider a single peak of a ferrofluid resulting from the Rosensweig instability for a small
fluid container. Minimizing the total energy of the system by a variational method we determine the
shape of the peak in a static field as well as the characteristics of the subcritical bifurcation leading to its
formation. The latter are in very good agreement with experiment. Generalizing the approach to dynamic
situations we qualitatively reproduce the complicated subharmonic response of the peak to an oscillating
part in the external magnetic field found in recent experiments.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 47.20.Ma Interfacial instability – 75.50.Mm
Magnetic liquids

1 Introduction

Ferrofluids are colloidal suspensions of ferromagnetic par-
ticles in a nonmagnetic carrier liquid. Due to the small
size of about 10 nm the particles are magnetic mon-
odomains and the fluids behave like super-paramagnetic
materials [1,2]. The interaction between the magnetizable
fluid and an external magnetic field gives rise to several in-
teresting phenomena like new or modified instabilities [3],
field depending viscosities [4,5], new dissipation mecha-
nisms [6], and viscoelastic effects [7]. The possibility to
modulate the hydrodynamic parameters of the fluid with
an external magnetic field also opens the way for a variety
of technical and medical applications [8].

In the present paper we investigate in detail the re-
sponse of a ferrofluid surface with small horizontal ex-
tension on a static and time dependent vertical mag-
netic field, a situation which was studied in recent ex-
periments [9]. As a consequence of the Rosensweig (or
normal field) instability [10] a peak appears on the sur-
face of the liquid. Previous theoretical investigations of
this instability have been focused on the two-dimensional
patterns [11,12] and the hysteretic behavior [13,14] of
the peak formation. Extending these studies we also
investigate the detailed shape of an individual peak.
An analysis of this shape has been accomplished re-
cently by means of a perturbation theory for the one-
dimensional case [15]. Here we consider the more real-
istic but also more complicated case of a two-dimensional
surface which cannot be investigated using a generaliza-
tion of the methods used in the one-dimensional situa-
tion. Moreover, motivated by the wide spectrum of fasci-
nating effects detected in different experiments [9,16,17]
we study for the first time theoretically the dynamic be-
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havior of a ferrofluid peak under the influence of an oscil-
lating magnetic field.

The paper is organized as follows. In the next section
we introduce the variational principle for the energy and
discuss our parameterization of the peak shape. In Sec-
tion 3, the magnetic field equations are transformed into a
form suitable for the implementation into the variational
calculation. Section 4 contains the results for the static
situation with time independent field. Sections 5 and 6
specify the generalization of the model to dynamics and
discuss the results for the case of an oscillating part in the
magnetic field respectively. The last section gives a short
summary and considers possible extensions of the present
work.

2 Energy variational principle

We consider the axisymmetric situation sketched in Fig-
ure 1. A ferrofluid of density ρ, surface tension σ, and
susceptibility χ is subject to an external field H0 which is
in the absence of any magnetic material of the form

H0 = H0ez. (1)

The gravitational acceleration g = −gez is parallel to the
z-axis. This setup was realized experimentally in [9]. The
parameters are chosen such that the critical wavelength
λc = 2π

√
σ/ρg of the Rosensweig instability [10] is larger

than the diameter of the vessel. This gives rise to the for-
mation of a single axisymmetric peak. The complete sur-
face of the ferrofluid including the part inside the vessel
is described by S(s) = (r(s) cos(φ), r(s) sin(φ), z(s)) pa-
rameterized by a single scalar parameter s. Our aim is to
determine the static free surface Sfree(s) of the fluid be-
tween the contact points marked with the two black points



330 The European Physical Journal B

6 4 2 0 2 4 6

r(mm)

−12

−10

−8

−6

−4

−2

0

2

z(
m

m
)

h a

b

c
air

ferrofluid

teflon
vessel

v

oH

Fig. 1. Cylindrical Teflon vessel filled with ferrofluid in an
external magnetic field H0 parallel to the z-axis. We investigate
the profile of the free surface characterized by the parameters
a, b, c, h and v.

in Figure 1. These points were found not to move in the
experiment.

The static profile of the ferrofluid is the minimum of
the thermodynamic potential

F̃ = ρg

∫
Vff

dV z + σ

∮
Sfree

dS − µ0

2

∫
Vff

dV H0(r)M(r). (2)

The first term in equation (2) is the hydrostatic energy,
the second is the surface energy and the third is the mag-
netic energy [18], where µ0 denotes the permeability of
free space and Vff the volume of the ferrofluid. The di-
rect minimization of F̃ [Sfree(s)] as a functional of the free
surface is very difficult, in particular since the magnetic
field for a given shape of the ferrofluid can only be deter-
mined numerically. Therefore we use a parameterization
of the free surface profile as sketched in Figure 1 using as
parameters the radius of curvature of the peak a, the di-
ameter of the cone b, the radius of curvature of the dip c,
and the height of the peak h and minimize F̃ with respect
to these parameters. To this end the magnetization M(r)
has to be calculated for each combination of the four pa-
rameters. Note that the depth of the dip v is not a free
parameter since it is fixed by volume conservation.

3 Field equations

The axisymmetric magnetic field is determined by the
static Maxwell equations

∇ ·B = 0 and ∇×H = 0 (3)

together with the conditions

lim
r→∞

H(r, z) = H0ez = lim
z→∞

H(r, z). (4)

The magnetic fields used in the considered experiments
are small enough to warrant the use of the linear relation

B = µ0(H + M) = µ0(1 + χ)H (5)

between the magnetic induction and the magnetic field.
The scalar magnetic potential ψ(r, z) defined by

H = −∇ψ (6)

has then to satisfy the Laplace equation

∆ψ = 0 (7)

inside and outside the ferrofluid. The ansatz

ψ(r) = −H0z +
1

4π

∮
∂Vff

dS
q(s)
|r− s| (8)

fulfills equation (7) and the condition equation (4). Here
∂Vff denotes the surface of the ferrofluid. Also the tangen-
tial component of the field H is continuous at the ferrofluid
surface. The introduced surface charge q(s) is the source
density of the magnetic field H and determined by the
boundary condition

Hout
n = (1 + χ)H in

n , (9)

where Hout
n and H in

n denote the normal component of the
magnetic field outside and inside the ferrofluid, respec-
tively. In this way the determination of the magnetic field
can be reduced to the solution of the integral equation

2χ
χ+ 2

 1
4π

∮
∂Vff

dS
(r − s)
|r− s|3 n(r)q(s) + H0ezn(r)

 = q(r)

(10)

for the charge q on the fluid surface as introduced in equa-
tion (8). The normal vector n on the interface points to
the outside of the fluid.

Exploiting the rotational symmetry of the problem
(10) may be simplified to an inhomogeneous Fredholm
equation of the second kind of the form

b∫
a

ds′K(s, s′)Q(s′) − 2H0∂sr(s) =
χ+ 2
χ

Q(s) (11)

for the function

Q(s) := q(s)
√

(∂sz(s))2 + (∂sr(s))2. (12)

The kernel K(s, s′) := r(s′)
π

π∫
0

dφ×

∂sz(s) (r(s) − r(s′) cosφ)− ∂sr(s) (z(s)− z(s′))(√
r2(s)− 2r(s)r(s′) cosφ+ r2(s′) + (z(s)− z(s′))2

)3

(13)
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Fig. 2. The thermodynamic potential F̃ (full line) as the sum
of the hydrostatic energy (dashed), the surface energy (dotted)
and the magnetic energy at H0 = 0.97Hc (long-dashed) as
function of the height h of the peak. The parameters of the
considered ferrofluid are listed in equations (14).

is quite complicated and therefore equation (11) is solved
by discretizing s and solving numerically the correspond-
ing linear equations. We note that the diagonal elements
of the corresponding matrix Ks,s′ are not singular except
for the singularity induced by the infinite curvature of the
surface at the contact points (cf. Fig. 1). In these regions a
finer discretisation was used, which had to be readjusted
for each profile in order to achieve accurate results for
the surface charge q(s) and the corresponding magnetic
potential ψ(r, z) with reasonable numerical effort.

4 The static behavior

Using the methods explained in the previous section to
determine the magnetic field for a time-independent ex-
ternal field the thermodynamic potential F̃ (a, b, c, h) may
be calculated for different values of the parameters cor-
responding to different shapes of the ferrofluid peak. We
then minimize F̃ numerically with respect to all four pa-
rameters to obtain the equilibrium configuration of the
free surface. For the hydrodynamic parameters we used
the experimentally relevant values [19]

ρg = 1.35× 104 kg m−2 s−2, σ = 2.05× 10−2 kg s−2,

χ = 2.93 (14)

where σ and χ were fitted to the values of the critical field
Hc and the saddle-node field Hs (see below). We note that
the surface tensions changes with temperature and the
susceptibility increases due to aging effects.

It turns out that the values of a, b, and c at the min-
imum of F̃ hardly depend on the external magnetic field
H0. In the following they will therefore be fixed to the val-
ues amin = 0.5 mm, bmin = 3.5 mm, and cmin = 1.5 mm
respectively.

In Figure 2 we have plotted the thermodynamic po-
tential F̃ (amin, bmin, cmin, h) as a function of the height of
the peak h. This function and the position of its mini-
mum strongly depends on the magnetic field H0. For a
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Fig. 3. Height of the peak h versus the strength of the static
field H0. The crosses mark the experimental data for increasing
(×) and decreasing field(+). The full line represents our theo-
retical results for the hysteresis. In the experiment [9] negative
heights could not been measured and were considered to be
zero.

certain range of the field strength the potential has two
local minima pointing to a backward bifurcation with hys-
teresis. We denote by Hc the critical field for the onset of
the instability and by Hs the saddle-node field for the
collapse of the peak. In the experiment described in [9]
they have been measured to be Hc = 6.2× 103A m−1 and
Hs = 5.8× 103A m−1.

Figure 3 shows the measured and the calculated height
h of the peak as function of the external field H0 mea-
sured in units of Hc. Note that only σ and χ have been
fitted by comparing the therewith calculated Hc and Hs

with the experimentally observed values. The very good
agreement of the calculated heights of the peak with the
measured values therefore validates our model parameter-
ization. The height of the peak at onset is 2.1 mm, whereas
shortly before the disappearance of the peak after reduc-
ing the field down to Hs = 0.94Hc the height is 1.0 mm.

The shape of the ferrofluid surface with the theoret-
ically determined values of a, b, c and h for the upper
branch in Figure 3 at H = 0.97Hc is shown in Figure 1.

5 Modelling the dynamics

The dynamics of the ferrofluid peak in the domain of the
subcritical bifurcation was investigated experimentally [9]
by means of an oscillating magnetic field of the form

H(t) = H0 +∆H sin(2πtfD), (15)

with a static part H0 and an oscillating part with am-
plitude ∆H. The oscillations of the ferrofluid peak were
analyzed and the response period T was compared with
the period of the driving magnetic field TD at different
driving frequencies fD. For given H0 the measurements
were restricted to those values of ∆H for which the peak
disappeared at least once during its oscillation cycle.
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Fig. 4. Period T of the peak oscillations in units of the driving period TD as function of the static field H0 and the alternating
field ∆H. For low driving frequency fD = 2.5 Hz both in our simulation (a) and in the experiment (b) only a harmonic response
is observed. The dashed line ∆H = Hc−H0 and the dashed-dotted line ∆H = H0−Hs mark the limits in the quasistatic case.
The higher value of the critical field Hc = 6.6 × 103A m−1 measured in the experiment indicates that χ was lower then the
susceptibility in the static case. By fitting this new Hc the corresponding value of χ = 2.39 was determined. Simultaneously the
saddle-node field Hs = 0.98Hc gets closer to the critical field. This second effect of a lower susceptibility is reproduced exactly
by our calculations without fitting σ.

We model the dynamics of the ferrofluid peak on the
basis of the thermodynamic potential F̃ , which we have
already calculated before. Assuming that the radius of cur-
vature of the peak a, the diameter of the cone b and the
radius of curvature of the dip c do not change during the
oscillations we use the differential equation

mḧ+
m

τ
ḣ = −∂hF̃ (h;H(t)) (16)

for the time dependence of the height of the peak h(t).
Here a dot denotes the derivative with respect to time. The
right hand side of equation (16) represents the force on the
peak and varies with the time due to the dependence of
the thermodynamic potential F̃ (h;H(t)) on the oscillat-
ing magnetic field. On the left hand side the influences of
inertia and the damping are modeled in a phenomenolog-
ical manner. Note that a more detailed account for these
effects would necessitate a complete analysis of the flow
field inside the ferrofluid which is rather complicated. The
parameters m = 3.61 × 10−3 g and τ = 13.4 × 10−3 s
were determined by fitting the dynamics resulting from
equation (16) to the oscillations observed in the experi-
ment. The value found for m is equivalent to a volume of
2.62 mm3 of the used ferrofluid, which is reasonable. Also
τ is in the order of the experimentally determined char-
acteristic time of the system Θ = 40 × 10−3 s, which is
given by the decay time of the peak if the field is suddenly
turned off.

In contrast to the left hand side of equation (16) the
force −∂hF̃ (h) is nonlinear in h as can be seen from Fig-
ure 2. We solve equation (16) numerically by means of
the fourth-order Runge-Kutta integration method with a

time step of TD/50. To ensure that our results are inde-
pendent of the chosen initial conditions h(0) = −0.35 mm
and ḣ(0) = 0 mm s−1 we calculate the solution over a to-
tal time of 107 TD and analyse the last 7 periods with
respect to a periodic behavior of h(t). The period of the
peak oscillations h(t) is determined by means of Poincaré
sections. Since we use a one-dimensional second order dif-
ferential equation to model the dynamics of the ferrofluid
we compare h(100TD) and ḣ(100TD) with h(100TD+nTD)
and ḣ(100TD+nTD), respectively, for n ∈ {1, 2, ..., 7}. The
smallest n with equality in both h and ḣ gives the period
time of the peak oscillations T = nTD in units of the driv-
ing period.

6 Results and discussion

The dependence of the oscillation period T of the ferrofluid
peak on the static field H0 and on the oscillating part ∆H
is shown in Figures 4a, 5a, 7a for three different driving
frequencies fD. For 90× 30 points in the H0 ×∆H plane
the oscillation periods were determined and displayed by
different colors. To facilitate the comparison the experi-
mental findings [9] are also shown. The harmonic response
is represented by the green color, a subharmonic response
with a period of T = 2TD by red. If the period time is
longer then 7TD the point in the diagram is marked gray
indicating that the peak oscillates with a higher period
or that chaotic dynamics may be observed. In the experi-
ments the period T was determined when a tip of ferrofluid
could be observed, i.e. the tip was higher than the edge
of the vessel, and the peak collapsed completely at least
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once during its oscillations. The same criterion giving rise
to the borderlines of the colored regions was used in dis-
playing the theoretical results. The relation between the
borderlines in both plots may hence serve as a first hint
on how well theoretical and experimental results coincide.

6.1 Low frequency

Our results for low driving frequency fD = 2.5 Hz are
shown in Figure 4a. They agree rather well with the exper-
imental data displayed in Figure 4b. The cone like shaped
region is completely green colored since only a harmonic
response is observed. The boundaries of the cone may be
understood from the quasistatic limit fD → 0. Then a
peak should arise if the driving magnetic field H(t) ex-
ceeds the critical field Hc at some time and collapse if the
driving magnetic field H(t) gets smaller then the saddle-
node field Hs for another time. Therefore the period of
the peak oscillations should be displayed only in the up-
per sector limited by the dashed line ∆H = Hc − H0

and the dashed-dotted line ∆H = H0 − Hs. As the re-
sults show already for driving frequency fD = 2.5 Hz both
in our theory and in the experiment two deviations from
this quasistatic behavior can be observed. Firstly, the right
border of the area, in which the peak does not break down,
is shifted to the left. This shift can be explained by the
fact that for a magnetic field H = (Hs + Hc)/2 in the
middle of the hysteresis the global minimum of the ther-
modynamic potential F̃ (h,H) at the larger peak height h
is more pronounced then the local minimum at the nearly
flat surface as can be seen in Figure 2. Hence an oscillation
of the peak around the larger height is more likely then
a collapse of the peak. Secondly, for small amplitudes of
the driving field occurs a slight asymmetry of the shape in
the H0−∆H plane develops and the peak breaks down al-
though the total field is always larger than Hs. This effect
points to the relevance of the inertial term in (16) which
allows the system to overcome the barrier of the ther-
modynamic potential and to reach the local minimum at
h < 0.

6.2 Medium frequency

Also for peak oscillations excited with a medium frequency
of fD = 13 Hz good agreement between theory and ex-
periment is found as shown in Figure 5. The shapes of
the colored regions roughly coincide and also the internal
transition lines are qualitatively reproduced by the theo-
retical results. For low values of H0 the surface response
is harmonic. A subharmonic response with T = 2TD can
be observed in the upper regions of the two period maps.
Both of this red areas form two tongues, which extend to
lower regions of the map, with the tongues even reaching
the bottom of the colored region in the experimental data.
In the ∆H-range from about 0.1Hc to 0.2Hc a domain
of oscillations with a period time T ≥ 3TD is observed.
The period-3-state is surrounded by a band of intermit-
tent states, which is wider for large amplitudes of the driv-
ing field ∆H. While a period-1-state softly bifurcates into
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Fig. 6. The simulated oscillations of the peak height during
7 periods of excitation for six different dimensionless static
field values H0 = 0.975, 1.025, 1.038, 1.075, 1.090 and 1.125 at
medium frequency fD = 13 Hz and fixed amplitude of the al-
ternating field ∆H = 0.184Hc. The long dashed line is indicat-
ing the edge of the vessel and the dashed line the flat surface.
The corresponding surface response takes place with period 1,
period 2, intermittency, period 3, period 7 and intermittency,
respectively. Note that peaks not crossing the long-dashed line
were not seen in the experiment.

a period-2-state, there exists no smooth transition from
T = 1TD or T = 2TD to T = 3TD and we observe the
same irregular change of the dynamics between these at-
tractors as in the experiment. Even oscillations with the
subharmonic modes 4, 5, 6 and 7 can be found.

For medium frequency we also display the detailed
time behavior as shown in Figure 6. The transition from
the period-1 and the period-2-state to the intermittent
state is accompanied by strong variations in the ampli-
tude of the oscillations, a peculiarity also seen in the
experiments.

6.3 High frequency

Figure 7 shows the results for the high driving frequency
fD = 23.5 Hz. In our period map (a) only oscillation with
the period time T = 1TD and T = 2TD show up, whereas
in the experiment (b) also higher periods and chaotic dy-
namics were observed. Moreover the calculated band with
the harmonic response is wider then the measured one
with, however, their progressions agreeing. In our simula-
tion and in the experiments at ∆H = 0.3 and ∆H = 0.2,
respectively, a period-2-state for a large range of the static
magnetic field H0 occurs. Generally speaking the agree-
ment between theory and experiment is less convincing
than in the previous cases indicating that with increasing
frequency the applicability of our simple phenomenologi-
cal model (16) of the peak dynamics gets questionable. A
much more complicated treatment including the whole hy-
drodynamics of the ferrofluid is likely to be necessary for
a thorough understanding of this high frequency domain.
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Fig. 5. Period T of the peak oscillations around the zero level in units of the driving period time TD as function of the static
field H0 and the alternating field ∆H. For medium driving frequency fD = 13 Hz the calculated dynamics (a) shows harmonic,
subharmonic and chaotic response in agreement with the experimental data (b). The measured critical field Hc = 6.2×103A m−1

was the same as in the static case. Thus we suppose that the susceptibility of the ferrofluid was χ = 2.93.

(a)

 H
0
 (H

C
)

 ∆
 H

 (
H

C
)

 

1

2

3

4

5

6

7

>7

0.92 0.94 0.96 0.98 1 1.02 1.04
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

 H
0
 (H

C
)

 ∆
 H

 (
H

C
)

 

1

2

3

4

5

6

7

>7

0.92 0.94 0.96 0.98 1 1.02 1.04
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 7. Period T of the peak oscillations around the zero level in units of the driving period time TD as function of the static
field H0 and the alternating field ∆H. For high driving frequency fD = 23.5 Hz in the simulation (a) only period-1-states and
period-2-states are observed, while the measured dynamics (b) shows states with higher periods and intermittency.

7 Summary

We used the thermodynamic potential F̃ to analyse both
the statics and the dynamics of the single ferrofluid peak.
By minimizing this free energy we have determined the
static shape of the peak. Our results for the subcritical
bifurcation are in very good agreement with the experi-
mental data.

Interpreting the derivative of F̃ with respect to the
peak height h as a force we have deployed a model for
the dynamics of the fluid peak. Applying this model we
have qualitatively reproduced all essential features of the
complex peak oscillations for the entire experimentally in-
vestigated spectrum of driving frequencies. For medium
and high frequency a subharmonic response with periods
up to 7 and 2, respectively, was observed, with the tran-
sition to higher periods happening via period doubling
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or intermittence. A very good quantitative accordance
with the experiment was achieved for low and medium
frequencies. Our model should be applicable also to oscil-
lations excited by vibrations of the solid base [16,17]. In
the latter case and for high frequency it might be neces-
sary to extend the proposed one-dimensional differential
equation to a system of equations for more free param-
eters to get the same agreement. The phenomenological
introduction of the inertia and the damping can probably
only be improved by the calculation of the correspond-
ing flow field of the ferrofluid. In the one-dimensional case
this can again be done perturbatively [21]. For the two-
dimensional situation a numerical simulation using finite
elements is currently under way.
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experimental data and several interesting discussions. Special
thanks are due to Alexander Rothert and Reinhard Richter
for a careful measurement of the surface tension and the sus-
ceptibility respectively of the used ferrofluids. This work was
supported by the Deutsche Forschungsgemeinschaft under the
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